CONTENTS
\qquad
Internal Accessories A6-04
Ratings A6-06
Applied Standards A6-14
Contact Time Charts \& Circuit Diagrams A6-18
Circuit Diagrams A6-20
External Sizes A6-24
Certifications A6-44

Automatic Transfer Switches 100~200A

It is a product that passed a KERI Type Test for the first time in the country.
It provides a stable power and a user-centered safety as well as the reliability and safety based on the quality and intensive technology that are recognized even by UL. VITZROTECH Auto Transfer Switch is designed and produced by applying a new IT technology and it provides an optimal solution that is suitable in any customer's environment. It is a premium product equipped with a user-friendly protection function in order to satisfy diverse needs of customers and to ensure the safety.

Utility

Its performance was recognized through technology integration and international standard certifications.

- It is a product applied with the accumulated switch design and application technologies, operating machine design technology and insulation design technology.
- It is a product with the largest short circuit capacity internationally and domestically, applied with the international standards IEC60947-3 (Switches) and IEC60947-6 (Transfer Switching Equipment).
- It is an automatic transfer switch equipped with the breaking capacity and its reliability has improved (Obtained a short circuit certificate through KERI Type Test).
- It provides the reliability and safety of the electric equipment based on the stable quality and intensive technology via UL1008 certification.
- It is a unique product equipped with both-way breaking capacity considering the distributed power.

Compact

It is possible to install a 600 mm LV panel board for all types through an optimal reduction of exterior structure

- Standard Type : Reduction of max. 73\% / Economic Type : Reduction of max. 48\%
- It can be built inside the movable generator or UPS since it is in a miniature structure.
- It is possible to supply a stable power by composing a separate system.
- All types can be installed horizontally and vertically.

Convenient

It is easy to carry out maintenance and designed in a safe structure.

- It is easy to attach/detach the insulation cover of the front part so that it is easy to identify the structural health of the breaking part and connecting terminal part.
- It is easy to check the switching performance and main contact state through a simple, removable Arc Shute structure.
- The operational part is protected by a steel cover and the structural health of solenoid can be checked by a simple removable.

Internal Accessories

Automatic Transfer Switches 100~3000A

VITZROTECH Auto Transfer Switch provides an optimal solution based on the various operational environments. Based on the experiences of switch field accumulated for a long period of time, it provides a user-centered safety and quality and intensive technology recognized at UL. VITZRO TECH ATS is designed and produced by applying IT technology which enables it to provide the optimal solution that is appropriate at any customer' s environment. In addition, we have products that are equipped with various specifications to be applied to various operational environments such as a miniature, enclosed type transfer switch and an uninterruptible transfer switch, ranging from low voltage to medium voltage vacuum transfer switches. We export the products to Americas, Europe and Middle East and their technology and quality were recognized. It is a premium product fully equipped with the user-centered protection function to ensure the best safety ever.

Safety

Each phase is enclosed separately to improve the breaking capacity and safety.

- Each phase is molded and enclosed individually to improve the breaking capacity and to increase the operational cycle of the product.
- The operational cycle is semi-permanent since the arc time generated during the switching is short and contact consumption is small.
- It ensures a steady and stable breaking capacity regardless of the operating voltage through an open operation using a separate breaking spring.

The safety of users has improved.

- It strengthened the main contact protection and breaking capacity using a 4-pole pre-closing and post-breaking structural design.
- The operational cycle of the product is long since it generates little arc due to a superior switching function.

Compact

It seems comfortable due to a compact design for the customers.

- It enhance the user-friendly image by adopting a volumized shape and creates the innovativeness by applying a simple, elegant and advanced product image.
- It stresses the reliability by adopting a streamlined form which is a simple and clean shape.
- The products inside the panel board are arranged neatly by applying a clear color.

Ratings

World-Best ATS Technology achieved by constant researches and continuous technology development - We invite you to the world of premium electric equipment ever, the finest products in the world.

Miniature ATS HS Types

Features

Saving power

It is in an instantaneous excitation mode with little operating current
(1.6A in case of AC 220 V operation)

Safe Design

The breaking part is molded for a dust-proof so the operational cycle of
the contact part is semi-permanent.

2-Coil Mode

It adopted a simple operation mode using 2 coils

Miniature

It can be built inside the portable generator or UPS

Low Cost

It is a miniature type and it is optimal for a single phase with less than
200A (non-inductive)
Applied Standard
IEC 60947-6-1 / UL1008

Type			21HS	22HS
Rated Current(In)		A	100	200
Rated Voltage(Ue)		V	AC220	AC220
Rated Insulation Voltage(Ui)		V	AC300	AC300
Rated Impulse Voltage(Uimp)		kV	4	4
Poles		P	2	2
Throw		T	One Throw	One Throw
Connection Type	Front		-	-
	Back		-	-
Performance				
Short Time Current(1s) Icw		kA	5	10
Short Circuit Peak Current lcm		kA	5	10
With Specific Circuit Breaker		kA	14	25
Fuse Mounting		kA	200	200
Switch Capacityapacity ${ }^{\text {Notel }}$		Class	AC-33B	AC-33B
Endurance	Electrical	Cycles	5,000	5,000
	Mechanical	Cycles	10,000	10,000
Transfer Sequence			$A \leftrightarrow B$	$A \leftrightarrow B$
Operation Time	Opening	msec	≤ 30	≤ 30
	Switching	msec	≤ 60	≤ 60
Conditions of Uninterruptible Transfer				
Switching	AC/DC 110V	A	-	-
	AC 220 V	A	1.6	4.85
Dimensions \& Weights				
		H	165	176
		W	127	151
		D	100	121
Weight		kg	1.1	2.2
Precautions			1) Transfer time is operated at 0.3 sec or less. Make sure a full operation is possible with an operation command of 0.5 sec or more. 2) When A-side and B-side operation command is done simultaneously, it may lead to coil burning. 3) In case of an operation relay, select a ufficient contact capacity that exceeds the operating current.	

* Note1) Switching Capacity : AC-33B :

Overcurrent Switching Performance (Closing $10 \times \mathrm{le}$, Breaking $10 \times \mathrm{le}, \operatorname{Cos} \emptyset=0.35$), Rated Load Switching Performance (Closing $1 \times \mathrm{le}$, Breaking $1 \times \mathrm{le}, \operatorname{Cos} \emptyset=0.8$

Ratings

Standard ATS WN Types

New model with improved insulated feature and safety
Neutral Point Mode added
A \leftrightarrow Neutral(off) $\leftrightarrow B$

Features

Full insulated feature

The breaking part is fully enclosed in a mold structure to completely prevent electrical accidents due to the insulation degradation resulting from an electric shock due to a physical contact or attachment of dust or foreign substances when used for a long time.

Safe Conduction

All phases are designed to have a certain contact pressure which allows them to maintain a safe conducting performance. It is protected by Latch device so the intensity of the over-current is high in case of a short circuit.

Sophisticated Design

Each phase is fully insulated and is in an independent 1 -phase structure. According to the convenience of users, the conduction parts of 3 -phase and 4 -phase can be combined depending on the capacity and the number of phases.

One-coil Mode

It is a Compact Type where closing of commercial power and reserved power is possible with 1 closing coil.

Safe Open Feature

By adopting a unique-structured arc shute, the operational cycle is semi-permanent because the arc breaking time is short and the contact consumption is little. A stable breaking can always be implemented regardless of the operating voltage by applying a trip operation that uses a breaking spring

Neutral Point Mode

After checking the stability and safety of the circuit, Neutral Point ("OFF" state) is possible due to the trip structure for the transfer mode.
That is, operation by $A \rightarrow$ off $\rightarrow B, B \rightarrow$ off $\rightarrow A$ as well as $A \rightarrow$ off $\rightarrow A$, $B \rightarrow$ off $\rightarrow B$ and instantaneous transfer are possible.

Saving Power

It is in an instantaneous excitation mode with very little power consumption. The contact pressure is protected by Latch device so the intensity of the overcurrent is high in case of a short circuit. By adopting a unique-structured arc shute, the operational cycle is semi-permanent because the arc breaking time is short and the contact consumption is little

Various Products

There are various products with the rated voltage and current up to $600 \mathrm{~V}, 100-3000 \mathrm{~A}$ and they are molded in a dust-proof structure. DC load switch is also possible.

Breaking Feature

A stable breaking can always be implemented regardless of the operating voltage by applying a trip operation that uses a breaking spring.

* Note1) Switching Capacity : AC-33B :

Overcurrent Switching Performance (Closing $10 \times \mathrm{le}$, Breaking $10 \times \mathrm{le}, \operatorname{Cos} \emptyset=0.35$),
Rated Load Switching Performance (Closing $1 \times \mathrm{le}$, Breaking $1 \times \mathrm{le}, \operatorname{Cos} \emptyset=0.8$

* Note2) Trip : The switch in the circuit is opened to the neutral position (OFF) at Power A or B.

66WN		68WN		610WN		612WN		616WN		620WN		625WN		630WN	
600		800		1000		1200		1600		2000		2500		3000	
AC600		AC600		AC600		AC600		AC600		AC600		AC600		AC600	
AC800		AC800		AC800		AC800		AC800		AC800		AC800		AC800	
8		8		8		8		8		8		8		8	
3, 4		3, 4		3, 4		3, 4		3, 4		3, 4		3, 4		3, 4	
Double Throw		Double Throw		Double Throw		Double Throw		Double Throw		Double Throw		Double Throw		Double Throw	
-		-		-		\bullet		-		-		-		-	
-		\bullet		-		\bullet		-		-		\bullet		-	
15		22		22		25		32		40		50		50	
15		22		22		25		32		40		50		50	
50		50		50		65		65		85		85		85	
200		200		200		200		200		200		200		200	
AC-33B		AC-33B		AC-33B		AC-33B		AC-33B		AC-33B		AC-33B		AC-33B	
5,000		5,000		5,000		5,000		5,000		3,000		3,000		3,000	
10,000		10,000		10,000		10,000		10,000		5,000		5,000		5,000	
$A \leftrightarrow B, A \leftrightarrow N e u t r a l($ off $) \leftrightarrow B$															
≤ 60		≤ 100		≤ 100		≤ 115		≤ 115		≤ 140		≤ 180		≤ 180	
≤ 20		≤ 30		≤ 30		≤ 30		≤ 30		≤ 35		≤ 35		≤ 35	
3 P	4P	$3 P$	4 P												
6.4	9	8	10	8	10	8	10	13	16	13	16	-	-	-	-
3.2	4.5	4	5	4	5	4	5	4	5	6.5	8	8	9	8	9
3		3		3		4		4		4		-		-	
1.5		1.5		1.5		2		2		2		2		2	
278	278	298	298	298	298	535	535	535	535	-	-	-	-	-	-
340	400	400	480	400	480	453	536	453	536	-	-	-	-	-	-
143	143	143	143	143	143	228	228	228	228	-	-	-	-	-	-
248	248	267	267	267	267	380	380	380	380	380	380	380	380	380	380
340	400	400	480	400	480	453	536	153	536	528	636	603	736	603	736
176	176	178	178	178	178	261	261	261	261	261	261	326	326	326	326
15	18	20	24	21	25	52.5	63.5	58	69	-	-	-	-	-	-
14	17	19	23	20	24	50	60	55	65	65	85	92.5	119	92.5	119
A6-19		A6-19		A6-19		A6-19		A6-19		A6-19		A6-19		A6-19	
A6-18		A6-18		A6-18		A6-18									

Ratings

Economic Type ATS W, WP Types

W type Standard Type A $\leftrightarrow \mathrm{B}$

WP type Pause Function
Additional Type A \leftrightarrow Pause \leftrightarrow B

Features

Safe Design
It provides a safe operation by adopting a dustproof mold structure at the breaking part.

For both AC/DC

The operating circuit can use both AC/DC.

One Coil Instantaneous Excitation Mode

- It is a power saving structure with an instantaneous excitation mode in one coil.
- The voltage of operating coil is both AC110/220V ($※$ Refer to the instruction).

It is an instantaneous operation type where the operation time cannot be adjusted. But, in case of WP type, a Neutral position is added between A-power source and B-power source which enables it to provide a temporary pause function (pause in OFF state) within 30 seconds that is not connected to both A and B power sources in case of transfer operation.
[Ex] When transferring from A-power to B-power
(1) A Opening \rightarrow (2) Pause for $3 \sim 30$ seconds \rightarrow (3) BClosing

This function is to prevent a short-circuit of load part and power source part by transferring to the other power after a residual voltage is extinct if the existing load is the same as the motor load that generates much residual voltage.
If a pause of more than 30 seconds or OFF status should be maintained, use a standard WN type.

[^0]

Ratings

Uninterruptible Transfer Types

 ATS CTTS
100A ~ 3000A

It is a Closed Transition Transfer Switch that automatically transfers without interruption to the control direction within 0.1 second (100 ms) by detecting the voltage difference between both powers and frequency difference and checking the synchronizing condition after a simultaneous closing of commercial (A) power and emergency (B) power.

WP type Pause Function
$A \leftrightarrow$ Synchronizing $\leftrightarrow B$

Features

Main Plant

Lightning may generate voltage drop for the commercial power or power failure and for the load that requires a long-time recovery, it can be transferred to the emergency power in advance without interruption and back to the commercial power without interruption.
*In case of an uninterruptible transfer,
(1) Power failure notified by KEPCO
(2) When the power is recovered and transferred to power plant
(3) When an instantaneous power failure is expected due to the weather
(4) When testing a generator or equipment

Uninterruptible transfer is possible when performing the planned maintenance or repairing such as the regular inspection of electrical equipment installed at banks and stations.

UPS Power Transfer Equipment

By examining the phase of both UPS powers, if they are within the standard value, an uninterruptible transfer is possible.

Explanation on Transfer Operation

Type			61CT			62CT			
Rated Current(In)		A	100			200			
Rated Voltage(Ue)		V	AC600			AC600			
Rated Insulation Voltage(Ui)		V	AC800			AC800			
Rated Impulse Voltage(Uimp)		kV	8			8			
Pole		P	2, 3, 4			2, 3, 4			
Throw		T	Double Throw			Double Throw			
Connection Type	Front		-			-			
	Back		-			-			
Performance									
Short Time Current(1s) Icw		kA	5			10			
Short Circuit Peak Current Icm		kA	5			10			
With Specific Circuit Breaker		kA	14			25			
Fuse Mounting		kA	200			200			
Switch Capacity ${ }^{\text {Notei) }}$		Class	AC-33B			AC-33B			
Endurance	Electrical	Cycles	5,000			5,000			
	Mechanical	Cycles	10,000			10,000			
Transfer Sequence			$\begin{gathered} \text { A } \leftrightarrow \text { Overlapping(overlapping) } \leftrightarrow B, A \leftrightarrow B, \text { Neutral(off) } \leftrightarrow B \\ A \leftrightarrow B \end{gathered}$						
Conditions for Uninterrupted Switchover			Phase difference : Within electrical angle 10°, Frequency difference : Within $0,2 \mathrm{~Hz}$, Volage : Voltage difference with the commercial one is within 5%, Instantaneous Interconnection Time : Within 0.05 second						
Operation Time	Closing	msec	≤ 55			≤ 55			
	Trip	msec	≤ 20			≤ 20			
Conditions of Uninterruptible Transfer			2 P	3 P	4 P	2 P	3 P	4 P	
Closing	AC/DC 110 V	A	4	4	5	5	5	7	
	AC 220 V	A	2	2	2.5	2.5	2.5	3.6	
Trip ${ }^{\text {Note2) }}$	AC/DC 110 V	A	1.4			1.4			
	AC 220 V	A	0.7			0.7			
Dimensions \& Weights									
Front Size (mm)		H	268	268	268	283	283	283	
		W	211	241	271	241	286	331	
		D	112	112	112	112	112	132	
Back Size (mm)		H	-	-	-	-	-	-	
		W	-	-	-	-	-	-	
		D	-	-	-	-	-	-	
Weight	Front	kg	6.5	8	10	8	10	12	
	Back	kg	-	-	-	-	-	-	
Additional Product Information									
Circuit Diagram			A6-24			A6-24			
Drawing			A6-40~42			A6-40~42			
Precautions			A6-18			A6-18			

* Note1) Switching Capacity : AC-33B :

Overcurrent Switching Performance (Closing $10 \times \mathrm{le}$, Breaking $10 \times \mathrm{le}, \operatorname{Cos} \emptyset=0.35$),
Rated Load Switching Performance (Closing $1 \times \mathrm{le}$, Breaking $1 \times \mathrm{le}, \operatorname{Cos} \varnothing=0.8$

* Note2) Trip : The switch in the circuit is opened to the neutral position (OFF) at Power A or B.
* Note3) 416CT/425CT Test Report held

64CT	66CT	610CT	$616 \mathrm{CT} \mid 416 \mathrm{CT}{ }^{\text {Note3) }}$	620CT	$425 \mathrm{CT}^{\text {Note3) }}$	630CT
400	600	800, 1000	1200, 1600	2000	2500	2500, 3000
AC600	AC600	AC600	AC600 \| AC415V	AC600	AC415	AC600
AC800	AC800	AC800	AC800 \| AC600V	AC800	AC600	AC800
8	8	8	8 \| 6	8	6	8
2, 3, 4	3, 4	3, 4	3, 4	3, 4	3, 4	3, 4
Double Throw						
-	-	-	-	-	-	-
-	-	-	\bullet	\bullet	\bullet	\bullet
12	15	25	32	40	50	50
12	15	25	32	40	50	50
35	50	50	65	85	85	85
200	200	200	200	200	200	200
AC-33B						
5,000	5,000	5,000	5,000	3,000	3,000	3,000
10,000	10,000	10,000	10,000	5,000	5,000	

$A \leftrightarrow$ Overlapping(overlapping) $\leftrightarrow B, A \leftrightarrow B, A \leftrightarrow$ Neutral (off) $\leftrightarrow B$
Phase difference : Within electrical angle 10°, Frequency difference : Within 0.2 Hz ,
Voltage : Voltage difference with the commercial one is within 5%, Instantaneous Interconnection Time : Within 0.05 second

≤ 60			≤ 100		≤ 115		≤ 150		≤ 250		≤ 250		≤ 250	
≤ 25			≤ 30		≤ 30		≤ 60		≤ 80		≤ 80		≤ 80	
2 P	3P	4P	3P	4 P	3P	4P	$3 P$	4 P	$3 P$	4 P	$3 P$	4P	$3 P$	4P
6.4	6.4	9	7	8	8	10	10	13	-	-	-	-	-	-
3.2	3.2	4.5	3.5	4	4	5	5	6.5	6.5	8	8	9	8	9
2			2		2		2		-		-		-	
1			1		1		1		2		2		2	

307	307	307	545	545	609	609	645	645	-	-	-	-	-	-
293	353	413	465	530	510	590	570	670	-	-	-	-	-	-
132	132	220	220	220	220		220	220	-	-	-	-	-	-
-	-	-	-	-	-	-	478	478	580	580	580	580	580	580
-	-	-	-	-	-	-	570	670	683	818	833	1018	833	1018
-	-	-	-	-	-	-	300	300	329	329	364	364	364	364
14	17	21	53	61	66	76	72	84	-	-	-	-	-	-
-	-	-	-	-	-	-	72	84	130	150	165	205	165	205

A6-24	A6-24	A6-24
$A 6-40 \sim 42$	$A 6-40 \sim 42$	$A 6-40 \sim 42$
A6-18	A6-18	A6-18

Applied Standards

Low Voltage Auto

Transfer Switch ...

 ATS, CTTS
Consideration points when applying and selecting

Relevant Standards

- UL 1008
- IEC 60947-6-1

Control Command

Closing and trip transfer operation is completed within 0.3 second but set Sequence so that it can be operated with a control command of 0.5 sec or more.

Interlock

Install an interlock (electrical) so that A power source and B power source are not commanded simultaneously at the operating circuit.
In case of WN Type, set a Sequence so that closing command and trip command are not in the same direction.

TR Capacity for Operating Circuit

The TR capacity of operating circuit should be calculated as shown below and use the capacity that exceeds the calculated value.
Operating Voltage \times Operating Current $\times 0.5=($ JVA
ex) Operating Voltage AC220V Operating Current 4 A
$220 \times 4 \times 0.5=440 \mathrm{VA}$
Use TR with 440VA or above.

Control Circuit

ATS is designed to turn OFF the operating current using an internal SW after the operation is completed. When the operating current is turned OFF by an auxiliary SW of body, it may lead to malfunctioning.

Selection of Control Relay

Use the selected voltage Relay 27, 84 and Timer with contact conducting current that exceeds the ATS operating current.
Considering the chattering of control relay, select a relay that can interrupt the operating current which is safer.

* When the operating power is unstable, use a voltage fixed relay.

Type \& Marking Method

[^1]
Applied Standards

Low Voltage Auto
Transfer Switch ATS, CTTS

Installation Location

Avoid high-temperature and highly humid places and places with poisonous gas.

Installation Direction

ATS is designed to use it by installing it in a certain direction. When the installation direction is changed, the feature will be changed. So, install it accurately.
ATS should be installed so that the body rating plate can be read properly when facing the front and it should be installed without any twist, vertical to the panel.

* If a normal installation is not possible due to problems on wiring or equipment arrangement, consult with our company.

Operating Power

In case of DC operation and if a dropper circuit is included in the operating power, the operating power of ATS must be connected to the input part of dropper circuit.

Control Circuit Connection

Use a control power and control line with extra length.
In case of DC operation, be cautious of battery shortage and charging shortage.

Main Circuit Connection

Firmly connect it by selecting wire size and solderless terminal that meets the current capacity.
Be careful not to add an excessive stress to the main circuit terminal.
Especially, when connecting using a Busbar, be careful not to add an excessive stress to the main circuit terminal.

Precautions when Operating Handle

Manual operation of ATS should be carried out only when a detailed inspection of operating part and charging part is performed at no-load status.
There may be some differences in switch force, switch speed and so on based on the manual operation of the operator, so ATS features cannot be guaranteed.

Maintenance \& Inspection

Conduct maintenance and inspection at regular cycle in order to maintain the performance of ATS steadily and well.

* Refer to the maintenance and inspection items presented in the instruction manual for the detailed information.

Low Voltage Auto

Transfer Switch ATS, CTTS

Option

Capacitor Trip Device

When using as CTD

When G, H terminals are connected to Trip Circuit during a power failure, it immediately trips. If tripping is required at an optional time, it can be used by adding S / W.
(Normal operation is possible within 30 seconds)

When using as Rectifier

C.D and E.F output terminals can be used as DC power.
(Close, Open, Motor OCR Power and etc)

Contact Time Charts \& Circuit Diagrams

Low Voltage Auto
Transfer Switch ATS, CTTS

Contact Time Charts

```
WNType
```


WP Type

W Type

Low Voltage Auto

Transfer Switch ATS, CTTS

WN Type Internal Circuit

WN Type Operating Circuits

In case of a Normal Transfer
(In case of an Instantaneous Transfer)

When using a TIMER for Transfer

In case of Manual-Auto COS Part

In case of a Capacitor Trip

Circuit Diagrams

Low Voltage

Automatic
Transfer Switch ATS, CTTS

WP Type

Internal Circuit

Control Circuit in case of a pause at neutral point

Operating Circuit 1

Pausing at Neutral Point when transferring $B \rightarrow A$

TM : Timer R : Limited Resistance 27, 84 : Voltage Relay

Operating Circuit 2

Pausing at Neutral Point when transferring from both ways, $A \rightarrow B, B \rightarrow A$

Precautions

- To pause at a neutral position, connect a Timer and limited resistance to T1, T2 terminals.
* Prepare a separate Timer and limited resistance.
- If the pause time is less than 3 seconds at the neutral position, the limited resistance should not be installed.
- The operating voltage to use when pausing at the neutral position should be AC 110, AC 220 V .
- When operating continuously, it should be within 5 times. When operating continuously for more than 5 times, it may malfunction due to overheating of coil or coil may be burned. Be cautious.
- When it is required to pause for more than 30 seconds (Both power OFF), use WN-Type of our company.

Limited Resistance

Type	61WP \sim 62WP	64WP					
Operating Voltage	AC110V	AC110V	AC110V AC220V	$	$	Timer Used	Select a Timer that can interrupt the operating current.
:---:	:---:	:---:	:---:				
3sec ~ 30 sec							

Control Circuit Diagram

C1, C2 : Closing Coil Si : Silicon Rectifier MS1, MS2 : Manipulation for Power Source Limit Switch AUX : Auxiliary Switch

Operating Terminal
A1-A2: A-Power Source Closing Terminal B1-B2 : B-Power Source Closing Terminal

400A

Internal Circuit

Xa1-Xa2,/Xb1-Xb2 :
Control Switch
CC : Closing Coil
Si : Silicon Rectifier
Operating Terminal
A1-A2 : A-Power Source Closing Termina B1-B2 : B-Power Source Closing Terminal

Operating Circuit 1

Operating Circuit 2

In case of Manual-Auto COS Part

* 27,84 : Voltage Relay

In case of a Normal Transfer
(In case of an Instantaneous Transfer)

* 27,84 : Voltage Relay

Circuit Diagrams

Low Voltage
Automatic
Transfer Switch ATS, CTTS

CTTS

Operational Flow Chart

Operating Circuit

Low Voltage
Automatic
Transfer Switch ATS, CTTS

Internal Circuit

A1, A2	"A" Power source side(On)
AT1, AT2	"A" Power source side(Trip)
ATS1, ATS2	Switch, Position contacts
BTS1, BTS2	
AUX1, 2	Switch, Auxiliary
AX, BX	Switch, Control
B1, B2	"B" Power source side(On)
BT1, BT2	"B" Power source side(Trip)
C	Coil, Closing
COM	Common
CTTS	Closed transition transfer swiitch
E1, E2, E3	Standby power source conn.
NO	Normally open
NC	Normally closed
N1, N2, N3	Utility power source
S1A, S1B, S1C	Switch, Position sensing
S2A, S2B	
S3A, S3B, S3C	
TC	Coli, Trip
T1, T2, T3	Costomer load conn.

External Sizes

Low Voltage
Automatic
Transfer Switch ATS, CTTS

WN Types 61WN~62WN

Back

Type	A	B
$2 P$	215	111
$3 P$	251	147
$4 P$	287	183

Low Voltage
Automatic
Transfer Switch ATS, CTTS

WN Type 64WN

Type	A	B
$2 P$	245	141
$3 P$	296	192
$4 P$	347	243

External Sizes

Low Voltage
Automatic
Transfer Switch ATS, CTTS

WN Type 66WN

Back

Type	A	B
$3 P$	340	224
$4 P$	400	284

Low Voltage
Automatic
Transfer Switch ATS, CTTS

WN Type 68WN

Type	A	B
$3 P$	400	284
$4 P$	480	364

Type	A	B
$3 P$	400	284
$4 P$	480	364

External Sizes

Low Voltage
Automatic
Transfer Switch ATS, CTTS

WN Type 610WN

Back

Type	A	B
$3 P$	400	284
$4 P$	480	364

Low Voltage
Automatic
Transfer Switch ATS, CTTS

WN Type 612WN

Front

Type	A	B
$3 P$	452.5	334
$4 P$	535.5	417

Back

Type	A	B
$3 P$	452.5	334
$4 P$	535.5	417

External Sizes

Low Voltage
Automatic
Transfer Switch ATS, CTTS

WN Type 616WN

Front

Type	A	B
$3 P$	452.5	334
$4 P$	535.5	417

Type	A	B
$3 P$	452.5	334
$4 P$	535.5	417

Low Voltage
Automatic Transfer
Switch ATS, CTTS

WN Type 620WN

Back

Type	A	B
$3 P$	527.5	409
$4 P$	635.5	517

External Sizes

Low Voltage
Automatic
Transfer Switch ATS, CTTS

WN Types 625~630WN

Type	A	B
$3 P$	602.5	484
$4 P$	735.5	617

Panel Processing Dimension

WN Types 100A~1000A

WN Types 1200A~3000A

Type		100~200A		400A		600A		800A	
		Front	Back	Front	Back	Front	Back	Front	Back
	A	152	152	152	152	200	200	200	200
B	2 P	111	111	141	141	-	-	-	-
	3P	147	147	192	192	224	224	284	284
	4P	183	183	243	243	284	284	364	364
C	2P	-	88	-	118	-	-	-	-
	3P	-	124	-	169	-	200	-	250
	4P	-	160	-	220	-	260	-	330
	D	-	9.5	-	9.5	-	9	-	9
	E	-	172	-	155	-	215	-	240
	F	10	10	10	10	10	10	10	10
	G	7	7	7	7	10	10	10	10
Type		1000A		1200A		1600A		2000A	3000A
		Front	Back	Front	Back	Front	Back	Back	Back
	A	200	200	349.5	349.5	349.5	349.5	349.5	349.5
B	2P	-	-	-	-	-	-	-	-
	3P	284	284	334	334	334	334	409	482
	4P	364	364	417	417	417	417	517	617
C	2P	-	-	-	-	-	-	-	-
	3P	-	250	-	279	-	279	354	432
	4P	-	330	-	362	-	362	462	565
D		-	9	-	18.5	-	18.5	18.5	18.5
E		-	240	-	390	-	390	390	390
F		10	10	14	14	14	14	14	14
G		10	10	-	-	-	-	-	-

External Sizes

Low Voltage
Automatic
Transfer Switch ATS, CTTS

HS Type 21HS

HS Type 22HS

Part Names
(1) A Operating circuit terminal (2) B Operating circuit terminal (3) A power source side main circuit terminal
(4) Loading side main circuit terminal
(3) B power source side main circuit terminal (3) Manual operating lever

Section A-A'
Panel Processing Dimension (Front)/200A 2P

Low Voltage
Automatic
Transfer Switch ATS, CTTS

W Types 61W~62W

Front

W Type 64W

Type	A	B
$2 P$	245	141
$3 P$	296	192
$4 P$	347	243

Type	A	B
$2 P$	245	141
$3 P$	294	192
$4 P$	347	243

External Sizes

Panel Processing
W Types 100A~200A
Dimensions

W Type 400A

Type		100~200A	400A	
		Front	Front	Back
A		91	152	-
B	2P	-	141	141
	3 P	148	192	192
	4 P	148	243	243
C		150	152	152
D	2P	-	-	120
	3 P	-	-	170
	4 P	-	-	220
E		-	-	9.5
F		-	-	155
G		4	3	3
H		9	9	9

Low Voltage
Automatic
Transfer Switch ATS, CTTS

WP Type 61WP Front connection

Arc space size (S1) is 30 mm when the main circuit voltage is 220 V and 60 mm when it is 600 V .

Type	A	B
$2 P$	214	113
$3 P$	244	143
$4 P$	274	173

WP Type 61WP Back connection

Arc space size (S 1) is 30 mm when the main circuit voltage is 220 V and 60 mm when it is 600 V .

Type	A	B
$2 P$	214	113
$3 P$	244	143
$4 P$	274	173

WP Type 62WP Back connection

External Sizes

Low Voltage
Automatic Transfer Switch ATS, CTTS

WP Type 62WP Back connection

Arc space size (S 1) is 30 mm when the main circuit voltage is 220 V and 60 mm when it is 600 V .

Type	A	B
$2 P$	244	143
$3 P$	289	188
$4 P$	334	233

WP Type 64WP Front connection

WP Type 64WP Back connection

(1) Operation Main Circuit Terminal
(2) Manual Operating Shaft

(3) Auxiliary Switch
(4) A-Power Source Main
Circuit Terminal
(5) Load Part Main Circuit Terminal
(6) B-Power Source Main Circuit Terminal

Arc space size (S 1) is 30 mm when the main circuit voltage is 220 V and 60 mm when it is 600 V .

Type	A	B
$2 P$	290	174
$3 P$	350	234
$4 P$	410	294

(7) Switch Display (8) Manual Handle

Panel Processing Dimensions

WP-Type

Type		606-61WP	62WP	64WP
B	2P	113	143	174
	3P	143	188	234
	4P	173	233	294
D		152	152	200
R		M5		M8

WP Types 61-64WP Back connection

WP-Type
Type 606-61WP 62WP 64WP 2P 113 143 174 B 3P 143 188 234 $4 P$ 173 233 294 D 152 152 200 2P 85 110 135 R 3P 115 155 195 4P 145 200 255 Q 140 180 T 7.5 9 R M5 M8

External Sizes

Low Voltage
Automatic
Transfer Switch ATS, CTTS

CTTS Type 61CT Front connection

Arc space size (S 1) is 30 mm when the main circuit voltage is 220 V and 60 mm when it is 600 V .

Type	A	B
2P	210.8	199.8
$3 P$	240.8	229.8
$4 P$	270.8	259.8

CTTS Type 62CT Front connection

Arc space size (S 1) is 30 mm when the main circuit voltage is 220 V and 60 mm when it is 600 V .

Type	A	B
$2 P$	240.8	229.8
$3 P$	285.8	274.8
$4 P$	330.8	319.8

(1) Manual Operation Hole
(2) Switch Display
(3) B-Power Source Main Circuit Terminal
(4) Load Part Main Circuit Terminal
(5) A-Power Source Main Circuit Terminal
(6) Auxiliary Switch
(7) Manual Handle

Low Voltage
Automatic
Transfer Switch ATS, CTTS

CTTS Type 64CT Front connection

Arc space size (S 1) is 30 mm when the main circuit voltage is 220 V and 60 mm when it is 600 V .
(1) Manual Operation Hole
(2) Switch Display
(3) B-Power Source Main Circuit Terminal
(4) Load Part Main Circuit Terminal
(5) A-Power Source Main Circuit Terminal

Type	A	B
$2 P$	292.5	278.5
$3 P$	352.5	338.5
$4 P$	412.5	398.5

CTTS Type 66-616CT Front connection

External Sizes

Low Voltage
Automatic
Transfer Switch ATS, CTTS

CTTS Types 616CT/416CT Back connection

Arc spaceSize

Main Circuit Voltage	S1	S2
200 V	26	430
600 V	90	450
Type	A	B
3P	570	540
4 P	670	640

CTTS Types 620-630CT Back connection

(1) Operating Circuit Terminal
(2) Manual Operation Hole
(3) Auxiliary Switch
(4) A-Power Source Main Circuit Terminal
(5) Load Part Main Circuit Terminal
(6) B-Power Source Main Circuit Terminal
(7) Switch Display
(8) Manual Handle

Arc spaceSize

Main Circuit Voltage			S1	S2
200 V			50	560
600V			100	600
Type		2000A		3000A
A	3P	683		833
	4P	818		1018
B	3P	645		795
	4P	780		980
E		128.5		126
F		132.5		130
G		15		20
H		15		20
1		123		148
J		135		185
L				125

Panel Processing Dimensions

61-64CT Front connection

66-616CT Front connection

Type		600 A	800A	1000A	1200A 1600 A
	$2 P$	435	480	540	
	$3 P$	500	560	640	
	I		360	360	360

Type		100A	200A	300A
2P	199.8	229.5	278.5	
	3P	229.8	274.8	338.5
	4P	259.8	319.8	398.5
B		152		200
C		76		100
R		M5		M8

616CT/416CT Back connection

Type	A	B
$3 P$	540	480
$4 P$	640	580

620-630CT Back connection

Type		200A	300 A
B	2P	645	795
	$3 P$	780	980
I		568	568
J	$3 P$	420	545
K	$4 P$	555	730
L	460	460	
Z	28	40	

Certifications

[^0]: * Note1) Switching Capacity : AC-33B :

 Overcurrent Switching Performance (Closing $10 \times$ le, Breaking $10 \times \mathrm{le}, \operatorname{Cos} \varnothing=0.35$),
 Rated Load Switching Performance (Closing $1 \times \mathrm{le}$, Breaking $1 \times \mathrm{le}, \operatorname{Cos} \emptyset=0.8$

[^1]: *The product classification marking can be modified without prior notice while improving the specifications.

